Google AI plugin
The Google GenAI plugin provides a unified interface to connect with Google’s generative AI models through the Gemini Developer API using API key authentication. It is a replacement for the previous googleAI
plugin.
Installation
Section titled “Installation”npm i --save @genkit-ai/google-genai
Configuration
Section titled “Configuration”import { genkit } from 'genkit';import { googleAI } from '@genkit-ai/google-genai';
const ai = genkit({ plugins: [ googleAI(), // Or with an explicit API key: // googleAI({ apiKey: 'your-api-key' }), ],});
Authentication: Requires a Google AI API Key, which you can get from Google AI Studio. You can provide this key by setting the GEMINI_API_KEY
or GOOGLE_API_KEY
environment variables, or by passing it in the plugin configuration.
Usage Examples
Section titled “Usage Examples”Text Generation (Gemini)
Section titled “Text Generation (Gemini)”import { genkit } from 'genkit';import { googleAI } from '@genkit-ai/google-genai';
const ai = genkit({ plugins: [googleAI()],});
const response = await ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt: 'Tell me something interesting about Google AI.',});
console.log(response.text());
Text Embedding
Section titled “Text Embedding”const embeddings = await ai.embed({ embedder: googleAI.embedder('text-embedding-004'), content: 'Embed this text.',});
Image Generation (Imagen)
Section titled “Image Generation (Imagen)”const response = await ai.generate({ model: googleAI.model('imagen-3.0-generate-002'), prompt: 'A beautiful watercolor painting of a castle in the mountains.',});
const generatedImage = response.media();
Gemini API Features
Section titled “Gemini API Features”The following features are available through the googleAI
plugin.
Gemini Files API
Section titled “Gemini Files API”You can use files uploaded to the Gemini Files API with Genkit:
import { GoogleAIFileManager } from '@google/generative-ai/server';import { genkit } from 'genkit';import { googleAI } from '@genkit-ai/google-genai';
const ai = genkit({ plugins: [googleAI()],});
const fileManager = new GoogleAIFileManager(process.env.GEMINI_API_KEY);const uploadResult = await fileManager.uploadFile('path/to/file.jpg', { mimeType: 'image/jpeg', displayName: 'Your Image',});
const response = await ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt: [ { text: 'Describe this image:' }, { media: { contentType: uploadResult.file.mimeType, url: uploadResult.file.uri, }, }, ],});
Video Generation (Veo) Models
Section titled “Video Generation (Veo) Models”The Google Generative AI plugin provides access to video generation capabilities through the Veo models. These models can generate videos from text prompts or manipulate existing images to create dynamic video content.
Basic Usage: Text-to-Video Generation
Section titled “Basic Usage: Text-to-Video Generation”To generate a video from a text prompt using the Veo model:
import { googleAI } from '@genkit-ai/google-genai';import * as fs from 'fs';import { Readable } from 'stream';import { MediaPart } from 'genkit';import { genkit } from 'genkit';
const ai = genkit({ plugins: [googleAI()],});
ai.defineFlow('text-to-video-veo', async () => { let { operation } = await ai.generate({ model: googleAI.model('veo-2.0-generate-001'), prompt: 'A majestic dragon soaring over a mystical forest at dawn.', config: { durationSeconds: 5, aspectRatio: '16:9', }, });
if (!operation) { throw new Error('Expected the model to return an operation'); }
// Wait until the operation completes. while (!operation.done) { operation = await ai.checkOperation(operation); // Sleep for 5 seconds before checking again. await new Promise((resolve) => setTimeout(resolve, 5000)); }
if (operation.error) { throw new Error('failed to generate video: ' + operation.error.message); }
const video = operation.output?.message?.content.find((p) => !!p.media); if (!video) { throw new Error('Failed to find the generated video'); } await downloadVideo(video, 'output.mp4');});
async function downloadVideo(video: MediaPart, path: string) { const fetch = (await import('node-fetch')).default; // Add API key before fetching the video. const videoDownloadResponse = await fetch(`${video.media!.url}&key=${process.env.GEMINI_API_KEY}`); if (!videoDownloadResponse || videoDownloadResponse.status !== 200 || !videoDownloadResponse.body) { throw new Error('Failed to fetch video'); }
Readable.from(videoDownloadResponse.body).pipe(fs.createWriteStream(path));}
Veo 3 uses the exact same API, just make sure you only use supported config options (see below).
To use the Veo 3 model, reference veo-3.0-generate-preview
:
let { operation } = await ai.generate({ model: googleAI.model('veo-3.0-generate-preview'), prompt: 'A cinematic shot of a an old car driving down a deserted road at sunset.',});
Video Generation from Photo Reference
Section titled “Video Generation from Photo Reference”To use a photo as reference for the video using the Veo model (e.g. to make a static photo move), you can provide an image as part of the prompt.
const startingImage = fs.readFileSync('photo.jpg', { encoding: 'base64' });
let { operation } = await ai.generate({ model: googleAI.model('veo-2.0-generate-001'), prompt: [ { text: 'make the subject in the photo move', }, { media: { contentType: 'image/jpeg', url: `data:image/jpeg;base64,${startingImage}`, }, }, ], config: { durationSeconds: 5, aspectRatio: '9:16', personGeneration: 'allow_adult', },});
Configuration Options
Section titled “Configuration Options”The Veo models support various configuration options.
Veo Model Parameters
Section titled “Veo Model Parameters”Full list of options can be found at https://ai.google.dev/gemini-api/docs/video#veo-model-parameters
negativePrompt
: Text string that describes anything you want to discourage the model from generatingaspectRatio
: Changes the aspect ratio of the generated video."16:9"
: Supported in Veo 3 and Veo 2."9:16"
: Supported in Veo 2 only (defaults to “16:9”).
personGeneration
: Allow the model to generate videos of people. The following values are supported:- Text-to-video generation:
"allow_all"
: Generate videos that include adults and children. Currently the only availablepersonGeneration
value for Veo 3."dont_allow"
: Veo 2 only. Don’t allow the inclusion of people or faces."allow_adult"
: Veo 2 only. Generate videos that include adults, but not children.
- Image-to-video generation: Veo 2 only
"dont_allow"
: Don’t allow the inclusion of people or faces."allow_adult"
: Generate videos that include adults, but not children.
- Text-to-video generation:
numberOfVideos
: Output videos requested1
: Supported in Veo 3 and Veo 22
: Supported in Veo 2 only.
durationSeconds
: Veo 2 only. Length of each output video in seconds, between 5 and 8. Not configurable for Veo 3, default setting is 8 seconds.enhancePrompt
: Veo 2 only. Enable or disable the prompt rewriter. Enabled by default. Not configurable for Veo 3, default prompt enhancer is always on.
Text-to-Speech (TTS) Models
Section titled “Text-to-Speech (TTS) Models”The Google Genai plugin provides access to text-to-speech capabilities through Gemini TTS models. These models can convert text into natural-sounding speech for various applications.
Basic Usage
Section titled “Basic Usage”To generate audio using a TTS model:
import { googleAI } from '@genkit-ai/google-genai';import { writeFile } from 'node:fs/promises';import wav from 'wav'; // npm install wav && npm install -D @types/wav
const ai = genkit({ plugins: [googleAI()],});
const { media } = await ai.generate({ model: googleAI.model('gemini-2.5-flash-preview-tts'), config: { responseModalities: ['AUDIO'], speechConfig: { voiceConfig: { prebuiltVoiceConfig: { voiceName: 'Algenib' }, }, }, }, prompt: 'Say that Genkit is an amazing Gen AI library',});
if (!media) { throw new Error('no media returned');}const audioBuffer = Buffer.from(media.url.substring(media.url.indexOf(',') + 1), 'base64');// The googleAI plugin returns raw PCM data, which we convert to WAV format.await writeFile('output.wav', await toWav(audioBuffer));
async function toWav(pcmData: Buffer, channels = 1, rate = 24000, sampleWidth = 2): Promise<string> { return new Promise((resolve, reject) => { // This code depends on `wav` npm library. const writer = new wav.Writer({ channels, sampleRate: rate, bitDepth: sampleWidth * 8, });
let bufs = [] as any[]; writer.on('error', reject); writer.on('data', function (d) { bufs.push(d); }); writer.on('end', function () { resolve(Buffer.concat(bufs).toString('base64')); });
writer.write(pcmData); writer.end(); });}
Multi-speaker Audio Generation
Section titled “Multi-speaker Audio Generation”You can generate audio with multiple speakers, each with their own voice:
const response = await ai.generate({ model: googleAI.model('gemini-2.5-flash-preview-tts'), config: { responseModalities: ['AUDIO'], speechConfig: { multiSpeakerVoiceConfig: { speakerVoiceConfigs: [ { speaker: 'Speaker1', voiceConfig: { prebuiltVoiceConfig: { voiceName: 'Algenib' }, }, }, { speaker: 'Speaker2', voiceConfig: { prebuiltVoiceConfig: { voiceName: 'Achernar' }, }, }, ], }, }, }, prompt: `Here's the dialog: Speaker1: "Genkit is an amazing Gen AI library!" Speaker2: "I thought it was a framework."`,});
When using multi-speaker configuration, the model automatically detects speaker labels in the text (like “Speaker1:” and “Speaker2:”) and applies the corresponding voice to each speaker’s lines.
Configuration Options
Section titled “Configuration Options”The Gemini TTS models support various configuration options:
Voice Selection
Section titled “Voice Selection”You can choose from different pre-built voices with unique characteristics:
speechConfig: { voiceConfig: { prebuiltVoiceConfig: { voiceName: 'Algenib' // Other options: 'Achernar', 'Ankaa', etc. }, },}
Speech Emphasis
Section titled “Speech Emphasis”You can use markdown-style formatting in your prompt to add emphasis:
- Bold text (
**like this**
) for stronger emphasis - Italic text (
*like this*
) for moderate emphasis
Example:
prompt: 'Genkit is an **amazing** Gen AI *library*!';
Advanced Speech Parameters
Section titled “Advanced Speech Parameters”For more control over the generated speech:
speechConfig: { voiceConfig: { prebuiltVoiceConfig: { voiceName: 'Algenib', speakingRate: 1.0, // Range: 0.25 to 4.0, default is 1.0 pitch: 0.0, // Range: -20.0 to 20.0, default is 0.0 volumeGainDb: 0.0, // Range: -96.0 to 16.0, default is 0.0 }, },}
speakingRate
: Controls the speed of speech (higher values = faster speech)pitch
: Adjusts the pitch of the voice (higher values = higher pitch)volumeGainDb
: Controls the volume (higher values = louder)
For more detailed information about the Gemini TTS models and their configuration options, see the Google AI Speech Generation documentation.
Next Steps
Section titled “Next Steps”- Learn about generating content to understand how to use these models effectively
- Explore creating flows to build structured AI workflows
- To use the Gemini API at enterprise scale or leverage Vertex vector search and Model Garden, see the Vertex AI plugin
The Google Generative AI plugin provides interfaces to Google’s Gemini models through the Gemini API.
Configuration
Section titled “Configuration”To use this plugin, import the googlegenai
package and pass
googlegenai.GoogleAI
to WithPlugins()
in the Genkit initializer:
import "github.com/firebase/genkit/go/plugins/googlegenai"
g := genkit.Init(context.Background(), genkit.WithPlugins(&googlegenai.GoogleAI{}))
The plugin requires an API key for the Gemini API, which you can get from Google AI Studio.
Configure the plugin to use your API key by doing one of the following:
-
Set the
GEMINI_API_KEY
environment variable to your API key. -
Specify the API key when you initialize the plugin:
genkit.WithPlugins(&googlegenai.GoogleAI{APIKey: "YOUR_API_KEY"})However, don’t embed your API key directly in code! Use this feature only in conjunction with a service like Cloud Secret Manager or similar.
Generative models
Section titled “Generative models”To get a reference to a supported model, specify its identifier to googlegenai.GoogleAIModel
:
model := googlegenai.GoogleAIModel(g, "gemini-2.5-flash")
Alternatively, you may create a ModelRef
which pairs the model name with its config:
modelRef := googlegenai.GoogleAIModelRef("gemini-2.5-flash", &genai.GenerateContentConfig{ Temperature: genai.Ptr[float32](0.5), MaxOutputTokens: genai.Ptr[int32](500), // Other configuration...})
Model references have a Generate()
method that calls the Google API:
resp, err := genkit.Generate(ctx, g, ai.WithModel(modelRef), ai.WithPrompt("Tell me a joke."))if err != nil { return err}
log.Println(resp.Text())
See Generating content with AI models for more information.
Embedding models
Section titled “Embedding models”To get a reference to a supported embedding model, specify its identifier to googlegenai.GoogleAIEmbedder
:
embeddingModel := googlegenai.GoogleAIEmbedder(g, "text-embedding-004")
Embedder references have an Embed()
method that calls the Google AI API:
resp, err := genkit.Embed(ctx, g, ai.WithEmbedder(embeddingModel), ai.WithTextDocs(userInput))if err != nil { return err}
See Retrieval-augmented generation (RAG) for more information.
Next Steps
Section titled “Next Steps”- Learn about generating content to understand how to use these models effectively
- Explore creating flows to build structured AI workflows
- To use the Gemini API at enterprise scale see the Vertex AI plugin
The genkit-plugin-google-genai
package provides the GoogleAI
plugin for accessing Google’s generative AI models via the Google Gemini API (requires an API key).
Installation
Section titled “Installation”pip3 install genkit-plugin-google-genai
Configuration
Section titled “Configuration”To use the Google Gemini API, you need an API key.
from genkit.ai import Genkitfrom genkit.plugins.google_genai import GoogleAI
ai = Genkit( plugins=[GoogleAI()], model='googleai/gemini-2.5-flash',)
You will need to set GEMINI_API_KEY environment variable or you can provide the API Key directly:
ai = Genkit( plugins=[GoogleAI(api_key='...')])
Text Generation
Section titled “Text Generation”response = await ai.generate('What should I do when I visit Melbourne?')print(response.text)
Text Embedding
Section titled “Text Embedding”embeddings = await ai.embed( embedder='googleai/text-embedding-004', content='How many widgets do you have in stock?',)
Image Generation
Section titled “Image Generation”response = await ai.generate( model='googleai/imagen-3.0-generate-002', prompt='a banana riding a bicycle',)
Next Steps
Section titled “Next Steps”- Learn about generating content to understand how to use these models effectively
- Explore creating flows to build structured AI workflows
- To use the Gemini API at enterprise scale see the Vertex AI plugin