Pinecone plugin
The Pinecone plugin provides indexer and retriever implementations that use the Pinecone cloud vector database.
Installation
npm install genkitx-pinecone
Configuration
To use this plugin, specify it when you initialize Genkit:
import { genkit } from 'genkit';import { pinecone } from 'genkitx-pinecone';
const ai = genkit({ plugins: [ pinecone([ { indexId: 'bob-facts', embedder: textEmbedding004, }, ]), ],});
You must specify a Pinecone index ID and the embedding model you want to use.
In addition, you must configure Genkit with your Pinecone API key. There are two ways to do this:
-
Set the
PINECONE_API_KEY
environment variable. -
Specify it in the
clientParams
optional parameter:clientParams: {apiKey: ...,}The value of this parameter is a
PineconeConfiguration
object, which gets passed to the Pinecone client; you can use it to pass any parameter the client supports.
Usage
Import retriever and indexer references like so:
import { pineconeRetrieverRef } from 'genkitx-pinecone';import { pineconeIndexerRef } from 'genkitx-pinecone';
Then, use these references with ai.retrieve()
and ai.index()
:
// To use the index you configured when you loaded the plugin:let docs = await ai.retrieve({ retriever: pineconeRetrieverRef, query });
// To specify an index:export const bobFactsRetriever = pineconeRetrieverRef({ indexId: 'bob-facts',});docs = await ai.retrieve({ retriever: bobFactsRetriever, query });
// To use the index you configured when you loaded the plugin:await ai.index({ indexer: pineconeIndexerRef, documents });
// To specify an index:export const bobFactsIndexer = pineconeIndexerRef({ indexId: 'bob-facts',});await ai.index({ indexer: bobFactsIndexer, documents });
See the Retrieval-augmented generation page for a general discussion on indexers and retrievers.