pgvector retriever template
You can use PostgreSQL and pgvector
as your retriever implementation. Use the
following examples as a starting point and modify it to work with your database
schema.
We use database/sql to connect to the Postgres server, but you may use another client library of your choice.
func defineRetriever(g *genkit.Genkit, db *sql.DB, embedder ai.Embedder) ai.Retriever { f := func(ctx context.Context, req *ai.RetrieverRequest) (*ai.RetrieverResponse, error) { eres, err := ai.Embed(ctx, embedder, ai.WithDocs(req.Query)) if err != nil { return nil, err } rows, err := db.QueryContext(ctx, ` SELECT episode_id, season_number, chunk as content FROM embeddings WHERE show_id = $1 ORDER BY embedding <#> $2 LIMIT 2`, req.Options, pgv.NewVector(eres.Embeddings[0].Embedding)) if err != nil { return nil, err } defer rows.Close()
res := &ai.RetrieverResponse{} for rows.Next() { var eid, sn int var content string if err := rows.Scan(&eid, &sn, &content); err != nil { return nil, err } meta := map[string]any{ "episode_id": eid, "season_number": sn, } doc := &ai.Document{ Content: []*ai.Part{ai.NewTextPart(content)}, Metadata: meta, } res.Documents = append(res.Documents, doc) } if err := rows.Err(); err != nil { return nil, err } return res, nil } return genkit.DefineRetriever(g, provider, "shows", f)}
And here’s how to use the retriever in a flow:
retriever := defineRetriever(g, db, embedder)
type input struct { Question string Show string}
genkit.DefineFlow(g, "askQuestion", func(ctx context.Context, in input) (string, error) { res, err := ai.Retrieve(ctx, retriever, ai.WithConfig(in.Show), ai.WithTextDocs(in.Question)) if err != nil { return "", err } for _, doc := range res.Documents { fmt.Printf("%+v %q\n", doc.Metadata, doc.Content[0].Text) } // Use documents in RAG prompts. return "", nil})